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The task of detecting communities on undirected networks has at-
tracted much attention in the past decades thanks to the progress
of computational power. Spectral methods, techniques based on the
study of eigenvalues and eigenvectors of particular matrices, rep-
resent one possible avenue to solve this problem. However, "clas-
sic" processes based on the adjacency matrix and related matrices
such as the normalized laplacian or the modularity matrix, fail to per-
form this task on "sparse" networks, which depict a common type of
network. In this paper we illustrate this issue and review a spectral
method based on the "non-backtracking" matrix, that is more suited
for this type of network, as well as other alternative matrices. We
quantify the performance of those methods on artificial generated
networks and real data sets.
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Detecting communities is a key challenge in numerous situ-
ations, from biology (1) to social science (2), or machine

learning optimization (3). Many approaches have been ex-
plored in that respect, using statistical inference, graph-cut or
modularity optimization (4) for example. Spectral methods
focus on the spectrum of particular matrices to uncover the
structure of the corresponding graph. Introduced in the 70’s,
they combine effectiveness and expertise about the network
beyond the simple modular structure. They originally involve
the Adjacency matrix, the Laplacian matrix or the Modularity
matrix for instance. However, these techniques are unable to
perform community detection in the particular case, though
frequently encountered, of "sparse" networks, whose commu-
nities are theoretically identifiable, and identified with other
statistically-based methods. Fortunately, this curse is not
inherent to the entire class of spectral methods, as a different
operator, the non-backtracking operator, slashes this issue.

We first describe the context of the use of spectral meth-
ods in community detection, and their limitation in a cer-
tain regime of network "sparsity" that we quantify and illus-
trate. This constraint justifies the introduction of the non-
backtracking operator, or Hashimoto matrix, that solves the
previously identified issue. Next, we bring in variants of this
operator that behave more appropriately in certain given situ-
ations. Finally, we compare the performance of the formerly
described methods in the case of artificial and real world data
sets.

Spectral Methods and their limitation

In the case of graph balanced bi-partitioning, if we consider
a graph G, we can assign each node i a label si ∈ {−1, 1}.
The problem can then be formulated as the minimization the
graph cut

R = 1
2
∑
i,j

Aij −
1
4
∑
i,j

(sisj + 1)Aij = 1
4s

TLs [1]

with L the Laplacian matrix, subject to
∑

i
si = 0. To solve

this, we can use a Relaxation method in which we minimize
Rx = 1

4x
TLx instead, where x can take real values, and is

subject to 1Tx = 0 and xTx = n. With the Lagrangian
multipliers, we can find that

Lx = λx [2]

In this case,
Rx = λn

4 [3]

Since the lowest eigenvector is forbidden by our constraints
(it is proportional to 1), the optimal solution is proportional
to the eigenvector of the second-lowest eigenvalue, the so-
called Fiedler vector. Since the components of the vector x
are not necessarily integers, taking the labels as the sign of
the components gives a good approximation of the original
problem.

A generalization of this algorithm, though not formally well
justified (5), has been given for a partition of k ≥ 3 clusters.
In this method, one takes the 2nd− to kth− lowest eigenvalues
of the Laplacian L, and build a n × (k − 1) matrix whose
columns are precisely the selected vectors. This matrix stores
n vectors in Rk−1, on which we perform a clustering algorithm
such as k-means. We then assign each node of the graph to the
cluster in which the corresponding vector has been assigned.

In the case of "dense" networks (theoretically speaking,
in the asymptotic network in which the average degree of a
node is proportional to n), these spectral methods are reliable.
However, they suffer from some drawbacks in the "sparse" case,
where the average degree of nodes is constant over the size
of the graph. Unfortunately, this type of network is often
encountered in real life problems, see Table II in (6). We will
use the stochastic block model to illustrate those deficiencies.

The stochastic block model (SBM) is a generalization of the
classic Erdős-Rényi (ER) random graph model. The ER model
presents two parameters n and p that defines respectively the
size of the network and the probability of an edge between

Significance Statement

Network clustering is primordial in a wide range of applications.
We review spectral methods, a particular approach that ex-
ploits the spectrum of certain matrices of the graph to solve
this task, and introduce a "non-backtracking" operator that per-
forms efficiently on a common class of "sparse" graphs where
classic operators based on the adjacency matrix fail to detect
communities. Variants of this operator, the Flow and Reluctant
matrices, balance the rationale behind the non-backtracking
matrix and certain of its drawbacks. Numerical performance
analyses give further insight and credit to these methods.
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two nodes. The SBM allows a block structure and provides
an easy way to generate networks with specified inter and
intra-community probabilities. Formally, the SBM is defined
by n, the number of nodes, r, the number of communities,
the partition of the nodes in r communities, and the matrix
[Pij ]ij = pij corresponding to the probability of an edge be-
tween a node in community i and a node in community j.
The "sparsity" of the network can be translated to pii = cij

n

in which the degrees of a node does not increase with n. In
the simplified case where there are only two balanced com-
munities with equal average degrees (in the case of different
average degrees, a study of the degree distribution of the nodes
clearly separates two modes. These modes define a strategy
of separation of the two communities), we have

P =
[
cin
n

cout
n

cout
n

cin
n

]
[4]

We can show (7) that the adjacency matrix, which is used in
spectral method for clustering, has an asymptotic spectrum
defined by a continuous part, where the density of the eigenval-
ues is given by ρ(λ) =

√
4c−λ2

2πc , the Wigner semi-circle law (8),
and a discrete part, where the largest engenvalue is bounded
by the maximum degree, and the second eigenvalue is given
by

λc = cin − cout
2 + cin + cout

cin − cout
[5]

The eigenvector linked to this eigenvalue is informative about
the community (7). The density previously formulated is
the density of the eigenvalues of the matrix representing the
"noise" in the stochastic block model, or the spectrum of the
matrix defined by the difference between the adjacency matrix
and the expected adjacency matrix (7). This "bulk" of noisy
eigenvalues is included in [−2

√
c, 2
√
c]. Hence, by setting

λc = 2
√
c, which is equivalent to

cin − cout =
√

2(cin + cout) [6]

we have an eigenvalue indistinguishable from the part of the
spectrum induced by randomness. Thus, a spectral method
cannot identify the eigenvector encapsulating the information
about the communities, even if the communities exist (cin −
cout > 0). This threshold becomes

√
q(cin + (q − 1)cout), in

the case of multiple communities. It has been proven that
this impossibility to detect communities under this threshold
applies, in fact, to any detection algorithm (9). However,
above this threshold, there is a regime in which the spectral
method fails, but the other methods work. This is due to the
localization of high degree nodes, which generate eigenvalues
that can shadow the eigenvalues linked to community informa-
tion. The eigenvectors corresponding to those eigenvalues are
uninformative about the community structure, but localize
high degree nodes. We illustrated this phenomenon in Fig 1.

Spectral Redemption

Hence there is a regime in which a community detection is
possible, but the "classic" spectral methods, that make use of
the adjacency matrix or a transformation of it, fail to fulfill
this task. A large number of schemes have been introduced
to cope with this issue, such as removing high degree nodes
(10), or add constants to the matrix, but they cause a loss of

Fig. 1. Density plot of the spectrum of the adjacency matrix of a graph with n = 4000
nodes, drawn from a Stochastic Block Model with two balanced communities. (Left)
cin = 20 and cout = 2. (Right) cin = 11 and cout = 5. In the first case, λc

is clearly separated from the "bulk", whereas, in the second case, λc is out of the
asymptotic distribution of the noisy eigenvalues, but is shadowed by eigenvalues
linked to high degree nodes (compared to their expected value). In both case the
bound
cin − cout >

√
2(cin + cout) is verified.

information about the communities. A new operator called
the "Non-Backtracking" operator (11) can overcome this diffi-
culty. This operator can be though as the study of a random
walker that is forbidden to return to its direct previous state.
This method works because the limitations of the previous
designs concerned the influence of high degree nodes in sparse
networks that biased the spectrum of the adjacency matrix
and made impossible the identification of the eigenvectors that
encapsulate the community structure. In the case of a non-
backtracking random walker, the agent cannot return back to
its previous state, which weaken the influence of those outliers.
This random walker is no longer a Markov chain over the
space of nodes, since the probability to reach a particular node
depends on the two previous visited nodes, thus we cannot for-
mulate a simple transition matrix over this space. However, it
becomes back a Markov chain in the space of directed edges, in
which we can formulate transition matrices and apply the same
resolution pipeline. Hence, in the case of non-backtracking
random walks, we introduce the non-backtracking matrix, or
the Hashimoto matrix (11), on the 2m× 2m space of induced
directed edges on the undirected graph as:

B(u→v),(w→x) =
{

1 if v = w and u 6= x
0 otherwise [7]

This matrix has interesting properties on its spectrum, that
make it convenient for the development of spectral methods.
We will develop the main results linked to its spectrum, and
particularly in the case of the Erdős-Rényi and Stochastic
block model (12).

The first important theorem attributable to Hashimoto
(13), is that the spectrum of the non-backtracking matrix
is embedded in the Ihara zeta function of a graph, function
defined in the corresponding paper.

Theorem 1 (Spectrum of the non-backtracking matrix)
Let B denotes the non-backtracking matrix of a graph G, and
ζG(z) its Ihara zeta function. Then the following identity
holds:

det(I − zB) = 1
ζG(z)

Hence, studying the spectrum of B is equivalent to local-
izing the poles of the Ihara zeta function of random graphs.
From this, one can show the following theorems in the case of
the Erdős-Rényi and Stochastic block model (12).
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Theorem 2 (Spectrum in Erdős-Rényi model) Let G
be an Erdős-Rényi graph with parameters (n, α

n
) for some

fixed parameter α > 1. Then, with probability tending to 1 as
n→∞, the eigenvalues λi(B) of its non-backtracking matrix
B satisfy

λ1(B) = α+ o(1) and |λ2(B)| ≤
√
α+ o(1)

Hence, the spectrum of a "sparse" graph coming from the
Erdős-Rényi model tends to be confined in a ball of radius
r =

√
α where α is the average degree of the nodes of the

graph, except for one real eigenvalue, that account for the
degree of the nodes, which tends to α.

In the case of the stochastic block model with r commu-
nities, we need to introduce the expected adjacency matrix
Ã = E(A) where A is drawn from the SBM. This matrix has
exactly the same eigenvalues as the matrix of probability defin-
ing the probability of edges between classes. We denote them
:

|µr| ≤ ... ≤ |µ2| ≤ µ1

µ1 is the eigenvalue given by the Perron-Frobenius theorem,
since all the elements in Ã are positive. We then define r0 as
following :

µ2
k > µ1 for all k ∈ [r0] and µ2

r0+1 ≤ µ1

Theorem 3 (Spectrum in the Stochastic Block Model)
Under the assumption that each vertex type has the same
asymptotic average degree α, and two other assumptions
described in (12), if we let G be a graph drawn from the SBM,
then, with probability tending to 1 as n→∞{

λk(B) = µk + o(1) for k ∈ [r0]
|λk(B)| ≤

√
α+ o(1) for k > r0

Hence, from this theorem, we can deduce that there is a
threshold r0 separating "visible" eigenvalues from "invisible"
ones in the expected adjacency matrix, according to their com-
parison to the square root of the Perron-Frobenius eigenvalue.
This induces asymptotic properties on the non-backtracking
matrix, namely that the r0 first eigenvalues are equals to the
eigenvalues of the expected adjacency matrix, and that the
others are confined in a "bulk" defined by a circle of radius

√
c

where c is the average degree of a node.
In the case of two communities of equal size in the stochas-

tic block model studied previously, with the block structure
elucidate in Eq 4 and cin > cout, we have two eigenvalues,
µ1 = cin+cout

2 which is the average degree, and µ2 = cin−cout
2 .

By Theorem 3, µ2
2 > µ1 ⇐⇒ (cin − cout) >

√
2(cin + cout).

In this situation, the second eigenvalue of B is asymptoti-
cally equal to µ2, which is out of the "bulk", and the other
eigenvalues of B are asymptotically inside. Hence, there is a
phenomena of "Spectral redemption" (14), in the sense that
the regime above the threshold where the classical spectral
methods failed to detect communities no longer exists with
community detection based on the non-backtracking matrix,
at least asymptotically.

Now, we justify the use of a spectral method for the non-
backtracking matrix, in the case of bi-partitioning. The ap-
proach used in (14) is to introduce a vector that is both
correlated to the communities, and near the eigenvector of µc.

We introduce

g(r)
u→v = µ−rc

∑
(w,x):d(u→v,w→x)=r

σx [8]

where r is an integer, σx ∈ {−1,+1} is the label of x, and
d(., .) represents the distance between edges in terms of
number of steps required to go to one edge to the other.
We can easily interpret this vector. In the asymptotic case
of a tree-like structure, we can manually compute, with
elementary induction and probabilities, that

E[σx]d(u,x)=r = σu

[
cin−cout

cin+cout

]r
Hence,

g(r)
u→v ' σu

( 2× c
cin + cout

)r
= σu

More rigorously, in the case where the communities are distin-
guishable, it is established that

〈
gru→v, σu

〉
is bounded away

from zero as n→∞ (14).
Now that we have a vector asymptotically correlated to the
communities, we have to show that this vector is, in fact, close
to the identifiable eigenvector that we can extract from the
spectrum of B. We have:

(Bg(r))u→v =
∑

x∈V (v)/{u}

g(r)
v→x [9]

In the case where the graph has a tree-like structure around
u, in a radius of r + 1, which is true asymptotically, then the
σx arising from the previous sum are exactly coming from the
vertices at the end of the edges r + 1 steps from u, hence :

(Bg(r))u→v = µ−rc
∑

(w,x):d(u→v,w→x)=r+1

σx = µcg
(r+1)
u→v [10]

Hence, g(r) is "almost" the eigenvector associated to µc, in
the sense that g(r) 6= g(r+1), but, they are close with high
probability. Indeed :

g(r)
u→v−g(r+1)

u→v = µ−rc
∑

(w,x):d(u→v,w→x)=r

[
σx−µ−1

c

∑
y∈N(x)/{w}

σy

]
[11]

There is cr terms on average in this sum, and we have directly
that

Eσx [σy] = cin
cin + cout

σx −
cout

cin + cout
σx [12]

Hence the elements of the sum have mean zero and finite
variance, which implies that

E[(g(r)
u→v − g(r+1)

u→v )2] = O(crµ−2r
c ) [13]

And, summing over the edges,

E[(g(r) − g(r+1))2] = O(crµ−2r
c |E|) [14]

With the detectability condition, c < µ2
c , the error term tends

to zero as r grows. 10 becomes, since |g(r)| is bounded,

|Bg(r) − µcgr| = o(1)|g(r)| [15]

we can see, from the definition of g(r), that in the tree-like
approximation the elements of g(r)

u→v are constant over u. Hence
if we sum them, we obtain the sum of the labels at r distance

PNAS | March 27, 2019 | 3



from v, multiplied by the number of incoming edges. This sum
has, on average, the same sign as the label of v. From this
study, a good approximation of the label of a vertex would be
the sign of the sum over the incoming edges of the elements
of the eigenvectors associated with µc elicited with a spectral
decomposition.

For computation interest, one can also show (11) that the
2n× 2n reduced matrix :

B′ =
[

0 D − 1

−1 A

]
has 2n eigenvalues shared with the non-backtracking matrix,
and that the 2(m− n) remaining eigenvalues are either 1 or
−1. The eigenvectors corresponding to the eigenvalues are
defined by :

Bg = µg =⇒ B′
(
gin

gout

)
= µ

(
gin

gout

)
[16]

with goutu =
∑

v∈N(u) gu→v and ginu =
∑

v∈N(u) gv→u. The
litterature (11) finds that gin and gout are inverted in the pre-
vious equation, but a manual computation shows the reverse:

(Bg)u→v =
∑

x∈N (v)/{u}

gv→x

(Bg)outu =
∑

v∈N (u)

(Bg)u→v =
∑

v∈N (u)

∑
x∈N (v)/{u}

gv→x

=
∑

v∈N (u)

goutv − gv→u = (
∑

v∈N (u)

goutv )− ginu

(Bg)inu =
∑

v∈N (u)

(Bg)v→u =
∑

v∈N (u)

∑
x∈N (u)/{v}

gu→x

= (du − 1)
∑

x∈N (u)

gu→x = (du − 1)goutu

Hence, in the community detection method, one can use B′
instead of B, with a great economy in complexity. The in-
ferred label are then given by the n first components of the
eigenvectors. In Fig 2 we plotted the spectrum of a graph
drawn from the same SBM as in Fig 1.

In the case of q > 2 communities, a similar generalization
as in the "classic" spectral methods can be expressed. There
is q− 1 independent vectors after the leading eigenvector with
eigenvalue c. And we can, again, perform a clustering algo-
rithm on the formed vectors in Rq−1. However, in this case,
there is an additional condition to ensure that all the eigenvec-
tors linked to communities are identifiable in the spectrum:

|cin − cout| > q
√
c [17]

defining an "easily detectable" threshold (11).

Alternative operator

Flow matrix. We have seen the limitation of classic spectral
methods using the adjacency matrix in order to infer com-
munities from its spectrum. We have also seen that the non-
backtracking matrix filled the gap. An alternative matrix
has been introduced by (15), the flow matrix, similar to the

Fig. 2. Spectrum of the non-backtracking matrix of a graph with n = 4000 nodes,
drawn from a Stochastic Block Model with two balanced communities. (Right) cin =
20 and cout = 2. (Left) cin = 11 and cout = 5. With the non-backtracking matrix,
λc on the left figure is not "blurred" by interference eigenvalues.

Fig. 3. 500 largest eigenvalues in the spectrum of the Flow matrix of a graph
with n = 4000 nodes, drawn from a Stochastic Block Model with two balanced
communities. (Right) cin = 20 and cout = 2. (Left) cin = 11 and cout = 5.
With the non-backtracking matrix, λc on the left figure is not "blurred" by interference
eigenvalues.

non-backtracking matrix but behave more appropriately to
sparse networks that displays high degree nodes. The Flow
matrix F is defined by :

F(u→v),(w→x) =
B(u→v),(w→x)

dv − 1 [18]

This matrix is similar to the non-backtracking matrix, but
weigh inversely proportionally the pair of edges by the degree
of the nodes they traverse. To justify the formulation of a
spectral algorithm on this matrix, we can easily show, as for
the bi-partition problem for the spectral method based on the
adjacency matrix, that :

uT(F− 11T)v = Q [19]

where u(i→j) = v(i→j) = sj and 1 = (1, .., 1)/
√

2m the nor-
malized unit vector. And

Q = 1
2m
∑
ij

[
Ai,j −

didj
2m

]
δgigj [20]

is the modularity of a given partition of the networks.
In the bi-partition problem, we find that the leading eigen-

vector of (F− 11T) maximizes the modularity and is non-
trivial, and we can apply the same algorithm as previously
elucidated with the non-backtracking matrix. One can notice
(15) that studying the leading eigenvector of (F− 11T) is
equivalent to studying the second largest eigenvector of F,
which is more convenient here for comparing the spectrum
of the different matrices. In the same example as before, we
plotted the spectrum of the Flow matrix in the case of the
stochastic block model. As shown in (15), the eigenvalues of

the "bulk" lie within
√

c/(c−1)
c

.The results are given in Fig 3.
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Reluctant-backtracking. A limitation of the fundamental con-
stituents of the non-backtracking operators, is that they are
based on a non-backtracking random walk that cannot re-
turn back to its previous state. Hence, a non-backtracking
random walker is typically stuck in hanging trees and leaves.
As a result those structures are ignored in the spectrum of
the non-backtracking matrix whereas they can be candidate
for communities. To cope with this issue, we can introduce
a "reluctant backtracking" operator (16), defining a random
walker that can return back to its previous state with a small
probability. This matrix allows a good trade between the
noise of high degree nodes in classic random walker and the
total deletion of leaves and hanging trees in the case of the
non-backtracking matrix in community detection. Following
the previous definition of the non-backtracking matrix and
its normalized version with the Flow matrix, the reluctant
backtracking operators are defined as such :

R(u→v),(w→x) = B(u→v),(w→x) + δvwδux
1
du

[21]

P(u→v),(w→x) =
R(u→v),(w→x)

dv − 1 + 1
du

[22]

R is equivalent to the non-backtracking matrix, with a small
term in the case of two identical edges with opposite direction,
where the corresponding term in the matrix is equal to the
inverse of the degree of the source. This value discourages a
random walker to return back to a high degree node. P is a
normalized version of this matrix, similar to the Flow matrix
with the non-backtracking matrix.

In the case of a bi-partitioning:

Q = 1
2muT(P− 11T)v [23]

where u(i→j) = v(i→j) = sj , with sj ∈ {−1,+1} the labels of
the nodes in the network.

As a result we can use either the leading eigenvector of
(P− 11T) or the second leading eigenvectors of P in order
to apply the same algorithm elucidated earlier. Again, we
plotted the spectrum of the normalized reluctant matrices in
the same configuration as for the previous spectra in Fig 4.

One important difference with the non-backtracking ma-
trix is that, while performing community detection with the
reluctant matrix, we approximate the solution of modularity
maximization by setting:

si = sgn(
∑
j

vi→j) [24]

The label of a node is approximated with the sum of the
elements of the eigenvector corresponding to the outgoing
edges.

Results

First, we justify the introduction of the Reluctant matrix in
the context of community detection where the presence of
hanging trees intervenes in the community detection. To do
this, we formed binary trees of a given depth, constructed by
induction, and we computed the overlap between the partition
constituted of the two trees, and the partition given by the
spectral method applied to the non-backtracking matrix and
the Reluctant matrix. The results are given in Fig 5. In

Fig. 4. 500 largest eigenvalues of the spectrum of the normalized reluctant matrix
of a graph with n = 4000 nodes, drawn from a Stochastic Block Model with two
balanced communities. (Right) cin = 20 and cout = 2. (Left) cin = 11 and
cout = 5. With the non-backtracking matrix, λc on the left figure is not "blurred" by
interference eigenvalues.

Fig. 5. Comparison of the bi-partition found in a graph composed of two concatenated
binary trees, with the non-backtracking matrix and the Reluctant matrix, together with
the eigenvalues of the respective matrices.

this particular case, the Reluctant matrix find perfectly the
two communities. In the case of the non-backtracking matrix,
there is no second real eigenvalues and the partition is random.

We also compared all the operators previously introduced
by their performance at recovering the partitions of the SBM
with two communities, the plot is displayed in Fig. 7. We
can clearly identify the "sparse" regime in which the adjacency
matrix performs poorly despite the identifiability of the two
communities, better recovered by the other matrices. We
can also notice that the Flow matrix performs poorly as well
compared to the non-backtracking matrix, at least in the
regime where the two communities begin to be identifiable.
The Reluctant and Normalized Reluctant matrices perform
similarly and are efficient.

Finally, we applied the operators to real-world data sets,
first the Zachary’s karate club data set (17), and then the
political book network of Krebs (unpublished). We plotted
the resulting graphs, with nodes colored according to their
inferred community, as well as the spectrum of the matrices
of the operators.

Discussion

We have reviewed spectral methods in the context of graph
partitioning and showed their limitation in a special regime of
sparsity in graphs. In this regime, the interesting parts of the
spectrum of classic matrices such as the adjacency matrix are
shadowed by noisy eigenvalues. We illustrated this with the
Stochastic Block Model. Fortunately the non-backtracking
matrix has a spectrum that behave more conveniently and
overcomes this difficulty. We presented the Flow matrix, that
better separates clusters in the case of degree distributed
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Non-backtracking matrix

Reluctant matrix

Flow matrix
Normalized 
Reluctant matrix

Mislabeled 
nodes

Perfect Partition : 
Recovered by B, R and P

Imperfect Partition:
Partition recovered by F

Non-backtracking matrix

Reluctant matrix

Flow matrix

Normalized 
Reluctant matrix

Mislabeled nodes 
from F

Perfect Partition : Recovered 
by B, R and P

Imperfect Partition:
Partition recovered by F

Fig. 6. Application of spectral methods on real-world data sets. Left : Karate Club network, the operators B, R, P perfectly recover the communities elucidated in the original
paper, F mislabels two nodes. Right : Political Book network, the operators B, R, P recover the same communities, F mislabels six nodes compared to the communities inferred
by the other operators

Fig. 7. Overlap of the recovered communities in the SBM with two communities in
function of (cin − cout)/2, and for different matrices. Here we have fixed c = 3.
Each point is computed with 20 networks of size n = 4000.

with "fat tail" distribution, where there are high degree nodes.
Finally we presented the Reluctant matrix, that aims at pre-
serving information contained in hanging trees. We applied
those operators to artificial and real word networks to illus-
trate their benefits.
Multiple difficulties remain to be solved. First, we have not
extended our analysis to the case of multi-clustering. Moreover
such task is not explicitly handled in the case of the Reluctant
matrix. Second, we have seen that in the context of clustering,
we can replace the non-backtracking matrix with a reduced
version of it with a dimension near the number of nodes. While
this brings huge computational saving, no such matrix has
been explicited for the Flow matrix and the Reluctant matrix.
Finally, we notice that the Flow matrix perform much less
than the non-backtracking matrix, a deeper understanding of
this difference could be advantageous.

Materials and Methods

Overlap. The overlap is a measure initially introduced in physics
to measure the relevance of inferred communities, in the case
of the SBM with two communities we have: Overlap =
1
n

∑n

u=1 1π(σ̂(u))=σ(u) − Maxσ∈[r]aσ where aσ is the proportion
of nodes in category σ.

Implementation. We used Python, and specifically the classic li-
braries such as Numpy and Scipy. For the manipulation of graphs,
we used networkX, and iGraph for the plots. For computational ef-
ficiency, we encoded matrices in scipy sparse matrix representations.
This enables us to use the Implicitly Restarted Arnoldi Method to
find a limited number of eigenvalues and eigenvectors. In particular,
we just compute the one corresponding to the two largest real values.
This way of doing allows us to infer communities on large network
of 4000 nodes in a few seconds, whereas it takes about 10 minutes
when taking the dense matrix and using classic numpy methods for
computing the spectrum of matrices.
We used data sets from the website http://konect.uni-koblenz.de/.
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