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Abstract

Data under the form of rank nomination networks intervene in many ap-
plications, from sociology and political studies to marketing or the ex-
amination of animal behaviour among others. The Plackett-Luce model,
an extension of the Bradley Terry model for pair-wise comparisons, has
been widely used to describe them. In this paper, we adapt the model
to perform community detection and preference prediction through the
introduction of proper parameters and latent variables which allow us to
derive an EM (Expectation-Maximization) algorithm and a Gibbs Sam-
pler to find MAP (Maximum a posteriori) estimates. We also introduce
different versions of the model to deal with covariate variables, together
with their bayesian inference schemes. We assess experimentally the effi-
ciency of these algorithms on synthetic data and a variety of applications.
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Chapter 1

Introduction

Given a social network of n individuals, where each person gives a list of his top
K-friend in the population, let λi,j > 0 be the esteem that individual i expresses for
individual j, with i 6= j. These quantities are not necessarily symnetrical. We consider
the following generative model for the lists of preferences, called the Plackett-Luce
model, and proposed by R. Duncan Luce [1] and R. L. Plackett [4]:

p(ρi|(λ)) =
K∏
k=1

λiρk∑
j 6=i λi,j −

∑k−1
l=1 λi,ρl

(1.1)

Where ρi = (ρi1, ..., ρik) denotes the top-K list of individual i. Intuitively, this model
corresponds to the situation where an individual iteratively chooses the best individual
among the remaining ones as follows: Each remaining individuals j has a value λi,j
and has a probability of being chosen equal to λi,j/

∑
k∈R

λi,k where R is the set of

remaining individuals that have not been ranked.
This model is quite popular to learn how to rank, and has found numerous appli-

cations, including the study of political polls [22], competitive racing [17] or market
behaviour [26].

Its popularity arises from its statistical foundation, and its analytic form. In
particular, Luce showed that model 1.1 satisfies the Luce’s Axiom, which states that
the ratio of the probability of choosing one individual over an other is independent
of the batch of individuals in which we choose. One implication of this axiom is
”internal consistency”, which results in the fact that a particular ranking of certain
individuals does not depend on the set of individuals they arise from [17]. In our case,
this means that we could extend our model by constraining an individual i to rank
only a subset A of the network by just changing the terms in 1.1 by using (λi,j)j∈A in
the sums, (we could think of a student ranking his classmates, even if his best friend
belongs to another class). Although we do not position ourselves in this context, this
remark further justifies the use of this model for its simplicity.
In decision theory, this model is also equivalent to the use of the Stochastic Utility
Model [7], that assumes rational choice behavior where the ”utility” of an individual
j for the individual i would be modeled with λi,j and a random term.
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Many methods have been developed to infer the parameters of this model. Hunter
[17] derived MM algorithms, based on surrogates functions, to find the MLE (Max-
imum Likelihood Estimate) of the model, and proved the existence and uniqueness
of the MLE if the network is strongly connected (where the edge i → j means that
individual i is preferred over j by at least one individual). In a Bayesian configura-
tion, [23] proposed a message passing algorithm that efficiently infer the parameters
by approximating the posterior distribution. An efficient EM algorithm and Gibbs
sampler have been developed in [27] by introducing latent variables in the model.

In addition to applying existing models that deal with covariates, this paper in-
troduces a new representation of the model in terms of latent communities. This
representation allows us to derive an EM algorithm and a Gibbs sampler to infer
MAP estimates, as well as giving insight into potential community structure in the
network. These statistical models are assessed on synthetic data and multiple appli-
cations.
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Chapter 2

Community representation

2.1 Mathematical Formulation

In this section we suppose that the strength between individuals are characterized
by their similitude to certain communities. We introduce p the number of latent
communities in the network. For each individual i, let wi ∈ (R+)p, be the vector
representation of i in the ”community space”. In this space, wi,s is the amplitude
of affiliation of the individual i to the community s. We then model the strength of
affiliation between individuals by the following formula:

λi,j =

p∑
k=1

wi,kwj,k = ~wi . ~wj (2.1)

For Bayesian inference, we also introduce the following priors, where Γ(α, β) is the
gamma distribution:

wi,j ∼ Γ(a, b), a, b > 0 (2.2)

We suppose here that the strength of the relations are only determined by the prox-
imity of the individuals communities. Hence the relations in this case are reciprocal.
From the reordering inequality, we can observe that, given the values attributed to
the coordinates of wi and wj, λi,j is maximized when both i and j have the same
community ranking preferences. We can also rewrite:

λi,j = ||wi||.||wj||.cos(θi,j) (2.3)

We can interpret the norm of the vector as the individual global influence, and the
θi,j ≥ 0 as the divergence in personality. Hence a given individual will appreciate
another individual with great influence but different personality or views as much as
an individual with low influence and with the same mindset.

We can also notice that:
λ = WW T (2.4)

Which is similar to the solution formulated in the domain of recommendation systems
by collaborative filtering, where a matrix of data M ∈ Rn×p is given (typically, Mi,j
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represents the ranking of object j for individual i) and approximated by the product
LUT , where L ∈ Rn×k and U ∈ Rp×k. LUT become, then, the approximated score
function between individual i ∈ [n] and the ”article” j ∈ [p] [24].

2.2 Computation of the posterior

The log-posterior of the community representation is the sum of the log priors of the
parameters and the log-likelihood:

l((w);D) =
n∑
i=1

p∑
k=1

(a− 1)ln(wi,k)− bwi,k +
n∑
i=1

K∑
j=1

ln(λi,ρj)− ln(
∑
j 6=i

λi,j −
j−1∑
l=1

λi,ρl)

(2.5)
We can compute the gradient of the posterior according to the parameter wr,s:
With

∂λi,j
∂wr,s

= 1i=rwj,s + 1j=rwi,s (2.6)

We have :

∂l((w);D)

∂wr,s
=
a− 1

wr,s
− b+

K∑
j=1

1

λ
r,ρ

(r)
j

w
ρ
(r)
j ,s

+
n∑

i=1;i 6=r

K∑
j=1

1

λi,r
wi,s1ρ(r)j =r

−

K∑
j=1

1∑
j 6=r λr,j −

∑j−1
l=1 λr,ρ(r)l

∑
j 6=r

wj,s −
n∑

i=1;i 6=r

K∑
j=1

1∑
j 6=i λi,j −

∑j−1
l=1 λi,ρ(i)l

wi,s+

K∑
j=1

1∑
j 6=r λr,j −

∑j−1
l=1 λr,ρ(r)l

j−1∑
l=1

w
ρ
(r)
l ,s

+
n∑

i=1;i 6=r

K∑
j=1

1∑
j 6=i λi,j −

∑j−1
l=1 λi,ρ(i)l

j−1∑
l=1

1
ρ
(i)
l =r

wi,s

(2.7)

The gradient is too complex to derive a formula for a MAP directly, hence justifying
the introduction of latent variables.

2.3 EM algorithm with community representation

The posterior distribution over the (w) derived in equation 2.7 is somewhat very
complicated. Hence, in this section, we introduce latent variables in order to derive
an EM algorithm.

2.3.1 Mathematical formulation

We recall the likelihood of the Plackett-Luce Model:

p(ρi|(λ)) =
K∏
k=1

λiρk∑
j 6=i λi,j −

∑k−1
l=1 λi,ρl

(2.8)
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With:

λi,j =

p∑
k=1

wi,kwj,k (2.9)

If we add a latent variable Z with probability distribution P (Z|D,λ) we obtain
the following complete data-likelihood:

L(λ, Z) = P (D,Z|λ) = (
n∏
i=1

K∏
k=1

λiρk∑
j 6=i λi,j −

∑k−1
l=1 λi,ρl

)P (Z|D,λ) (2.10)

Hence our approach is to find latent variables that would both give sense and a
convenient posterior distribution over the (w) to derive an EM algorithm.

We first introduce, where E(λ) is the exponential distribution:

Vi,j,k ∼ E(wi,kwj,k), 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ p (2.11)

Vi,j = min(Vi,j,1, ..., Vi,j,p) ∼ E(λi,j) (2.12)

And

Zi,k|ρi = min(Vi,j)j 6=i,ρi[1],...,ρi[k−1] ∼ E(
∑

j 6=i,ρi[1],...,ρi[k−1]

λi,j), 1 ≤ k ≤ K (2.13)

An interpretation of these latent variables is that the next person ranked by an
individual is equivalent to the first arrived individual in a waiting process (among
those remaining to be ranked) following an average waiting time of 1

λi,j
. The arriving

time of this same individual is equivalent to the first arriving time of p other indi-
viduals in a waiting process following an average waiting time of 1

wi,kwj,k
which is the

contribution of the kth community.
This latent variable allows us to suppress the denominator in 2.10. To suppress

the nominator we introduce the following latent variables, where Cat(p1, ..., pk) is the
categorical distribution:

Yi,j ∼ Cat(
wi,1wρi[j],1
λi,ρi[j]

, ...,
wi,pwρi[j],p
λi,ρi[j]

), 1 ≤ j ≤ K (2.14)

These variables can be interpreted as the community responsible for the choice of a
certain individual.

We obtain the following log-likelihood distribution:

L((w);Y, Z,D) =
n∑
i=1

K∑
k=1

{
− (
∑
l 6=i

λi,l−
k−1∑
l=1

λi,ρl)zi,k+

p∑
l=1

δyi,k,l(ln(wi,l)+ ln(wρk,l)))

}
(2.15)

9



2.3.2 EM formulation

E-step:

EZ,Y |ρ,(w)∗(L((w);Y, Z,D)) =

n∑
i=1

K∑
k=1

{
−

(
∑

l 6=i λi,l −
∑k−1

l=1 λi,ρl)

(
∑

l 6=i λ
∗
i,l −

∑k−1
l=1 λ

∗
i,ρl

)
+

l∑
l=1

w∗i,lw
∗
ρk,l

λ∗iρk
(ln(wi,l) + ln(wρk,l)))

}
(2.16)

Hence, with a gamma prior on the (w) we obtain:

Q(w|w∗) =
n∑
i=1

[
K∑
k=1

{
−

(
∑

l 6=i λi,l −
∑k−1

l=1 λi,ρl)

(
∑

l 6=i λ
∗
i,l −

∑k−1
l=1 λ

∗
i,ρl

)
+

p∑
l=1

w∗i,lw
∗
ρk,l

λ∗i,ρk
(ln(wi,l) + ln(wρk,l)))

}
+

p∑
l=1

(a− 1)ln(wi,l)− bwi,l

]
(2.17)

M-step: With the same result as in chapter 2 for the full derivation:

∂λi,j
∂wr,s

= 1i=rwj,s + 1j=rwi,s (2.18)

We obtain this time, after computation:

wr,s
∂Q

∂wr,s
= C(r, s, w∗)− A(r, s, w, w∗)wr,s (2.19)

With

C(r, s, w∗) = a− 1 +
K∑
k=1

w∗r,sw
∗
ρr[k],s

λ∗r,ρr[k]

+
∑
i 6=r

w∗i,sw
∗
r,s

λ∗i,r
1(r ∈ ρi) (2.20)

and

A(r, s, w, w∗) = b +

( K∑
k=1

1

Λ∗(r, k)

)(∑
l 6=r

wl,s

)
+
∑
i 6=r

wi,s

( K∑
k=1

1

Λ∗(i, k)

)
−

K−1∑
l=1

wρr(l),s

( K∑
k=l+1

1

Λ∗(r, k)

)
−
∑
i 6=r

wi,s

( K∑
k>rankρi (r)

1

Λ∗(i, k)

)
1(r ∈ ρi) (2.21)

where

Λ∗(i, k) =
∑
l 6=i

λ∗i,l −
k−1∑
l=1

λ∗i,ρi[l] (2.22)

We can see that it is difficult to directly derive the maximum arguments for
Q(w|w∗), as putting the gradient to zero require to solve a set of non linear equations.
However, we can notice that A(r, s, w, w∗) does not depend on wr,s. Moreover, we
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can check that A and C are always positive if a ≥ 1. Hence, as a function of one
parameter, Q has one maximum reached by setting the derivative to zero. Hence
instead of updating the whole set of variables w directly by maximizing Q, we can
update the elements one by one and update the set of fixed elements w∗. As A and
C are always positive, doing so will increase the posterior likelihood. We can update
iteratively wr,s with

w(t)
r,s =

C(r, s, w(t−1))

A(r, s, w(t−1))
(2.23)

This process will converge to (at least) a local minima.

2.3.3 EM formulation with variable ranks

In this section we suppose thatK depends on the individual i i.e we allow the indiduals
to classify as many people as they wish. The resulting model is the same, with only
replacing K with Ki. We obtain the following log-likelihood distribution.

L((w);Y, Z,D) =
n∑
i=1

Ki∑
k=1

{
− (
∑
l 6=i

λi,l−
k−1∑
l=1

λi,ρl)zi,k+

p∑
l=1

δyi,k,l(ln(wi,l)+ ln(wρk,l)))

}
(2.24)

We proceed the same way as the previous section, and we obtain the same formu-
lations by allowing different lengths for the rows of ρ. In particular, we obtain the
following EM algorithm for inference on the w:

w(t)
r,s =

C(r, s, w(t−1))

A(r, s, w(t−1))
(2.25)

with

C(r, s, w∗) = a− 1 +
Kr∑
k=1

w∗r,sw
∗
ρr[k],s

λ∗r,ρr[k]

+
∑
i 6=r

w∗i,sw
∗
r,s

λ∗i,r
1(r ∈ ρi) (2.26)

and

A(r, s, w, w∗) = b +

( Kr∑
k=1

1

Λ∗(r, k)

)(∑
l 6=r

wl,s

)
+
∑
i 6=r

wi,s

( Ki∑
k=1

1

Λ∗(i, k)

)
−

Kr−1∑
l=1

wρr(l),s

( Kr∑
k=l+1

1

Λ∗(r, k)

)
−
∑
i 6=r

wi,s

( Ki∑
k>rankρi (r)

1

Λ∗(i, k)

)
1(r ∈ ρi) (2.27)

where

Λ∗(i, k) =
∑
l 6=i

λ∗i,l −
k−1∑
l=1

λ∗i,ρi[l] (2.28)
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2.3.4 Handling missing data

If a certain individual has not given any ranking of his friends, the EM algorithm
with variable ranks handles this situation. In this case, Eq. 2.25 remains the same
for the missing data, Eq. 2.26 becomes :

C(r, s, w∗) = a− 1 +
∑
i 6=r

w∗i,sw
∗
r,s

λ∗i,r
1(r ∈ ρi) (2.29)

and 2.27:

A(r, s, w, w∗) = b+
∑
i 6=r

wi,s

( Ki∑
k=1

1

Λ∗(i, k)

)
−
∑
i 6=r

wi,s

( Ki∑
k>rankρi (r)

1

Λ∗(i, k)

)
1(r ∈ ρi)

(2.30)

We can then predict the ranks of the individuals with regard to this person that has
not expressed himself by sampling from the Plackett-Luce model with the optimized
parameters.

2.4 Degree Correction

ρ

Z Y

W

b

Figure 2.1: Scheme Latent Variables

In this section we refine the Plackett-Luce model to study the potential global in-
fluence of a community over the others, to do this, we introduce the parameters
(bk)k∈{1,...,p} > 0, such that:

∀i ∈ [n], wi,k ∼ Γ(a, bk) (2.31)

We use the same approach as in the EM algorithm, we introduce the same Latent
variables to represent the model. We consider the general case in which the number
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of ranks is not fixed for each individuals. We use the conjugate prior of the gamma
distribution Γ(a, bk) for the prior of bk, namely:

bk ∼ Γ(α0, β0) (2.32)

The new set of variables is resumed in Figure 2.1.
Using these latent variables, we can compute the conditional distribution of every

variable and build a Gibbs Sampler from which we can sample from the full posterior
distribution. We update iteratively b, Y , W , z, as follows at iteration t:

1. b
(t)
s | W (t−1) ∼ Γ(α0 + na, β0 +

n∑
i=1

w
(t−1)
i,s )

2. Y t
i,j | W (t−1) ∼ Cat(

w
(t−1)
i,1 w

(t−1)
ρi[j],1

λ
(t−1)
i,ρi[j]

, ...,
w

(t−1)
i,p w

(t−1)
ρi[j],p

λ
(t−1)
i,ρi[j]

)

3. Z
(t)
i,k |W (t−1), ρi ∼ E(

∑
j 6=i,ρi[1],...,ρi[k−1]

λ
(t−1)
i,j ), 1 ≤ k ≤ Ki

4. w
(t)
r,s | b(t), Y (t), Z(t),W

(t)
\{r,s}, ρ ∼ Γ

(
a−1+

∑
1≤k≤Kr

(δs(yr,k))+
∑
i:i→r

(δs(yi,rankr(ρi)));

b
(t)
s +

( Kr∑
k=1

zr,k(
∑
l 6=r

wl,s−
k−1∑
l=1

wρr[l],s)
)

+
(∑
i 6=r

Ki∑
k=1

wi,szi,k1{r /∈ (ρi[1], ..., ρi[k−1])}
))

The log-posterior distribution is given by:

log(P (W, (b)|D)) = (α0 − 1)

p∑
s=1

log(bs) + (nlog(a)− β0)

p∑
s=1

bs+

n∑
i=1

p∑
s=1

(a− 1)log(wi,s)− bswi,s +
n∑
i=1

Ki∑
j=1

log(λi,ρj)− log(
∑
j 6=i

λi,j −
j−1∑
l=1

λi,ρl) (2.33)

2.5 Identifiability

In our model, the prior as well as the likelihood are invariant by relabelling, hence,
if one wants to use a MCMC approach to estimate the parameters, a posterior mean
estimate would be completely inappropriate. Richardson [14] discusses this issue and
proposes to incorporate ”artificial” constraints in the prior to make the labelling
identifiable. Constraints could be the addition of a term 1(b1 < b1 < ... < bp) in the
prior of the model. In our case, the result of the EM algorithm is deterministic and
characterized by the initialization. In the case of our Gibbs Sampler, we decided to
keep the original priors, but we took maximum a posteriori estimates of the parame-
ters instead of the posterior mean. We compared these estimates with the resulting
posterior distributions.

An other remark is the fact that the norms of the vectors (λi)i∈[n] are not like-
lihood identifiable. However, the representation we have adopted in terms of latent
communities does not allow us to derive a simple reparameterization of the wi,k to
take advantage of this property.
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2.6 Model Selection

Our representation with latent communities introduces the parameter P , the number
of communities in the network. A different value of P involves a different model with
a different number of parameters. It would be interesting to infer P from the data.
Since the computation p(P |D) involves intractable integrals, the use of simulations
seems inevitable.

2.6.1 Reversible Jump MCMC

A first approach for model selection would be to treat P as parameter and use a
Markov Chain Monte Carlo method to sample from the full posterior distribution.
However, a difficulty arises when we have to compute the acceptance ratio for the
changement of state. Indeed, since the models don’t have the same number of pa-
rameters, the respective densities are not comparable. The use of Reversible Jump
MCMC (RJMCMC), would, given a prior over the models, solve this problem. The
MAP of P could, then, be estimated by its most encountered value in the Markov
Chain. We have no place to justify the use of this method, however, a full develop-
ment of the RJMCMC can be found in [12]. See the appendix for a description of the
algorithm. Here is one possible formulation of the algorithm for our purpose:

Our parameters are wi,k with i ∈ {1, ..., n}, k ∈ {1, ..., p} for a model P = p
with p latent communities. We fix the number Pmax of models we will test, so that
1 ≤ P ≤ Pmax.
Suppose the state is Xt = (w

(t)

p(t)
, p(t)), to get irreducibility, we need both fixed and

variable dimension moves. Here we suppose that the user has already elicited a prior
over the models π(p), depending on the case studied:

1. Propose p∗ = p(t) with probability 1
2
, or propose p∗ = p′ ∈ [Pmax] with proba-

bility 1
2Pmax

.

2. (a) If p∗ = p(t), then propose w∗i,j ∼ Γ(α = 2, β = 1

w
(t)
i,j

), for (i, j) ∈ [n]× [p(t)].

Accept with probability

α(X(t), X∗) = min(1,
P (w∗,p∗|D)

∏
i,j Γ(w

(t)
i,j ,α=2,β= 1

w∗
i,j

)

P (w(t),m(t)|D)
∏
i,j Γ(w∗i,j ,α=2,β= 1

w
(t)
i,j

)
).

Otherwise reject and keep X(t+1) = X(t).

(b) If p∗ > p(t), then propose w∗i,j ∼ Γ(α = a, β = b) for i ∈ {1, ..., n} and

j ∈ {p(t) + 1, ..., p∗} and accept with probability

α(X(t), X∗) = min(1, P (w∗,m∗|D)

P (w(t),m(t)|D)
∏
i,j∈{m(t)+1,...,m∗} Γ(w

(t)
i,j ,α=a,β=b)

).

Otherwise, reject the proposal and keep X(t+1) = X(t).

(c) If p∗ < p(t), then propose w∗ by dropping the parameters w
(t)
i,j for i ∈

{1, ..., n} and j ∈ {p∗ + 1, ..., p(t)} and accept with probability

α(X(t), X∗) = min(1,
P (w∗,p∗|D)

∏
i,j∈{p(t)+1,...,p∗} Γ(w

(t)
i,j ,α=a,β=b)

P (w(t),p(t)|D)
).

Otherwise, reject the proposal and keep X(t+1) = X(t).
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This version is a possible algorithm one can implement to perform model selection.
However there are some precautions to take and multiple limitations of this method:
First, since the different models that we propose are ”refinements” of the representa-
tion of the data, in the sense that a higher number of parameters only increases the
precision with which we can describe the data, the role played by the prior on the
models is crucial. The elicitation of the prior will determine a ”regularization” error.
For instance, if one chooses a uniform prior, we can expect the chain to indicate a
preference for the model with the highest number of parameters Pmax. Second, the
reversibility of the chain implies the conception of a diffeomorphism Ψp1→p2 between
models of different dimension. When, for instance, the algorithm jumps from a model
of dimension p1 to p2 where p2 > p1, the literature often suggests sampling the ad-
ditional parameters either from the prior directly [21] or the posterior density of the
additional parameters given the kept parameters [16]. In our case the posterior is not
computable unless introducing additional latent variables (see Section on the Degree
Correction). Moreover, one can notice the moves with fixed dimensions are equiva-
lent to a classic M-H exploration of the space of parameters. From these remarks,
we can notice that the jumps with variable dimension do not take into account the
past explorations of the parameter space of each model. To cope with this issue,
we could think of storing the previous explorations of each model by the constant
dimension moves, and take these past explorations into account when defining a pro-
posal for the jumps. However, this would imply that the diffeomorphisms defining
the jumps between models is not longer homogeneous, which is a case not treated in
[12]. Hence, we can expect this algorithm to perform poorly in our case, especially
when n increases, since the difference in dimension between models become wider,
and so the exploration in each model more crucial.

2.6.2 Information Criterion

A second approach of model selection comes from information theory [11], [25]. When
fitting the data, a more refined model with additional parameters will mimic the data
more accurately, which can result in overfitting the data. The Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) are estimators that try
to balance the accuracy of the representation and the flexibility of a model with a
penalty term on its complexity. These estimators are given by:

AIC = 2k − 2log(L(θ̂MLE)) (2.34)

BIC = 2log(n)k − 2log(L(θ̂MLE)) (2.35)

Where k is the number of parameters in the model, in our case, k = n× p, and θ̂MLE

is the maximum likelihood estimate. A model will then be selected to minimize one
of these criteria.
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Chapter 3

Model with Covariates

3.1 Covariate models

The modelling of social network data has been carried out from various perspectives.
In particular, the use of Exponential Random Graph Models (ERGM) has been thor-
oughly studied in this objective [28]. However, these models are computationally
expensive, are exposed to the problem of confounding nodal covariate effects with
nodal degree effects and are limited to binary relational data (Pavel N. Krivitsky [35]
has recently refined an ERGM model to incorporate Rank-Order relational data). In
this chapter we develop a natural extension of the Plackett-Luce model that deals
with covariates as well as a regression model with a different likelihood that deals
with the previously mentioned limitations of the ERGMs models in the context of
rank nomination networks.

3.2 The Plackett-Luce Model with Covariates

3.2.1 Formulation

A natural refinement of the Plackett-Luce model to incorporate covariates is by adopt-
ing the following model for the parameters λ:

log(λi,j) = βTxi,j (3.1)

Where xi,j represents the covariates of the relation between individual i and j. Since
the Plackett-Luce model is defined up to a multiplicative constant, parameters corre-
sponding to intrinsic characteristics of individual i are not identifiable. The covariates
xi,j also include the variables (1{l = j})l∈[n], the corresponding parameter βl repre-
senting the popularity of individual l. We can put a prior on the parameters (β):

p(βi) ∼ N (0, σ2) (3.2)

Then, we obtain the following log posterior:

L(β|D) ≡ −β
Tβ

2σ2
+

N∑
i=1

Ki∑
j=1

βTxi,ρi[j] − log
( ∑
l 6=i,ρi[1],...,ρi[j−1]

exp(βTxi,l)
)

(3.3)
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3.2.2 Fitting the model

In order to infer the parameters, we can simply implement a metropolis-hasting al-
gorithm by designing a proposal distribution and compute point estimates from the
approximated posterior distribution. Another method consists in using an MM al-
gorithm similar to [17] or [26] used in the context of the Bradley-Terry model or a
mixture of Plackett-Luce.

In equation 3.3, we cannot optimize directly the objective function because of the

last term −log
( ∑
l 6=i,ρi[1],...,ρi[j−1]

exp(βTxi,l)
)

. However, −log(θ) is convex, hence, with

g(θ) ≥ g(θ̄) + g′(θ̄)(θ − θ̄) for a convex function we have:

− log
( ∑
l 6=i,ρi[1],...,ρi[j−1]

exp(βTxi,l)
)
≥ −log

( ∑
l 6=i,ρi[1],...,ρi[j−1]

exp(β̄Txi,l)
)

+ 1−

∑
l 6=i,ρi[1],...,ρi[j−1]

exp(βTxi,l)∑
l 6=i,ρi[1],...,ρi[j−1]

exp(β̄Txi,l)
(3.4)

Where β̄ is a constant value of β. We obtain, without the constants:

L(β|D) ≥ −β
Tβ

2σ2
+

N∑
i=1

Ki∑
j=1

βTxi,ρi[j] −

∑
l 6=i,ρi[1],...,ρi[j−1]

exp(βTxi,l)∑
l 6=i,ρi[1],...,ρi[j−1]

exp(β̄Txi,l)
(3.5)

The last term is still an issue, however, β → −exp(βTxi,l) is concave. With g(θ) ≥
g(θ̄)+{g′(θ̄)}T (θ− θ̄)+ 1

2
(θ− θ̄)TB(θ− θ̄) where B is negative definite and B < ∂2g(θ̄)

∂θ2
,

see [9] for quadratic surrogates:

−exp(βTxi,l) ≥ −exp(β̄Txi,l)− xTi,lexp(β̄Txi,l)(β − β̄)− 1

2
(β − β̄)TB(β − β̄) (3.6)

Where B = xi,lx
T
i,l, hence we obtain, without the constants:

L(β|D) ≥ −β
Tβ

2σ2
+

N∑
i=1

Ki∑
j=1

βTxi,ρi[j]

−

∑
l 6=i,ρi[1],...,ρi[j−1]

xTi,lexp(β̄
Txi,l)β + 1

2
βT (xi,lx

T
i,l)β − βT (xi,lx

T
i,l)β̄∑

l 6=i,ρi[1],...,ρi[j−1]

exp(β̄Txi,l)
(3.7)

We can optimize the second term directly since we have a formula with quadratic
terms in β, Computing the optimized value β requires to inverse a matrix of the size
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of the number of covariates. We obtain :

β =

[ N∑
i=1

Ki∑
j=1

∑
l 6=i,ρi[1],...,ρi[j−1]

xi,lx
T
i,l∑

l 6=i,ρi[1],...,ρi[j−1]

exp(β̄xi,l)
+

1

σ2
I

]−1

×

[ N∑
i=1

Ki∑
j=1

xi,ρi[j] −

∑
l 6=i,ρi[1],...,ρi[j−1]

exp(β̄Txi,l)xi,l − (xi,lx
T
i,l)β̄∑

l 6=i,ρi[1],...,ρi[j−1]

exp(β̄Txi,l)

]
(3.8)

The matrix inversion is licit since it is a positive definite matrix.

3.3 The social relations regression model (SRRM)

Model

One drawback of the previous model is that it cannot capture the sociability of the
individuals, or their predisposition to have positive relationship with numerous other
individuals. This can be interpreted by the fact that any row effect in the previous
model vanishes in the Plackett-Luce model, and that the number of rankings is fixed
in advance and independent of the values of the λi,j. This difficulty is inherent to
the Plackett-Luce likelihood, where the number of ranking for each individual is not
linked to the values of the λi,j. We can change the formulation of the problem to
bypass this issue by adopting the model used by P. Hoff [31].

3.3.1 Formulation

We now authorize the matrix representing the strength of affiliation between individ-
uals λ to be negative. We then introduce S the sociomatrix given in data.
S = {si,j : i 6= j}, is coded so that si,j = 0 if j is not nominated by i, si,j = 1 if j
is ith least favored nomination, and so on. Under this coding, si,j > si,k if i scores j
more highly than k, or if i nominates j but not k. Letting ai = {1, ..., n}\{i} be the
set of individuals whom person i may potentially nominate, each observed outdegree
di =

∑
j∈ai 1(si,j > 0) satisfies di ≤ m. Now instead of using the Plackett-Luce model

that generated S with λ, we create the constraints:

si,j = [(m− ranki(λi,j + 1) ∧ 0)]× 1(λi,j > 0) (3.9)

and its inverse:
si,j > 0⇒ λi,j > 0 (3.10)

si,j > si,k ⇒ λi,j > λi,k (3.11)

si,j = 0 and di < m⇒ λi,j ≤ 0 (3.12)
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Now if a statistical model is formulated for {p(λ|θ) : θ ∈ Θ}, inference for the
parameter θ can be derived from the observed scores S through the likelihood:

LF (θ : S) = Pr(λ ∈ F (S)|θ) =

∫
F (S)

p(λ|θ)dµ(λ) (3.13)

Where F (S) denote the set of λ-values that are consistent with S in terms of the
three previous equations, and µ is a measure that dominates the probability densities
{p(λ|θ) : θ ∈ Θ}.

If the statistical model allows it conveniently, we can formulate a Gibbs Sampler
from this process : Given current values of (θ, λ), one step of the Gibbs sampler
proceeds by updating the values as follows:

1. Simulate θ ∼ p(λ|θ)

2. For each i 6= j, simulate λi,j ∼ p(λi,j|θ, λ−(i,j), λ ∈ F (S)) as follows:

(a) if si,j > 0, simulate
λi,j ∼ p(λi,j|λ−(i,j), θ)× 1(max{λi,k : si,k < si,j} ≤ λi,j ≤ min{λi,k : si,k >
si,j});

(b) if si,j = 0, and di < m simulate λi,j ∼ p(λi,j|λ−(i,j), θ)× 1(λi,j ≤ 0);

(c) if si,j = 0, and di = m simulate λi,j ∼ p(λi,j|λ−(i,j), θ)× 1(λi,j ≤ min{λi,k :
si,k > 0});

This process will generate values of λi,j from its full distribution, constrained to the
conditions dictated by the matrix S. If a Gibbs Sampler cannot be formulated, a
Metropolis-Hasting algorithm can be developed with the appropriate proposal distri-
bution.

3.3.2 Regression Model

Given this process for treating ranked data, we choose, as in [31], to take the following
regression model, called the Social Relations Regression Model (SRRM):

yi,j = βTxi,j + ai + bj + εi,j (3.14)(
ai
bi

)
, i = 1, ..., n ∼ i.i.d normal(0,Σab) (3.15)(

εi,j
εj,i

)
, i = 1, ..., n ∼ i.i.d normal(0, σ2

(
1 ρ
ρ 1

)
) (3.16)

The additive row effect ai can be interpreted as i′s ”Sociability” whereas the additive
column effect bi can be interpreted as i′s ”Popularity.”, the introduction of these
parameters account for the disparity in in-degree or out-degree in the network. The
parameter ρ represents potential correlation between yi,j and yj,i. The covariance
matrix Σab represents the correlation between the sociability and popularity of an
individual [6].
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Chapter 4

Experimental Results

4.1 EM Algorithm

In this section we evaluate the performance and the results obtained with the EM
algorithm previously described in the context of Community representation. We
implemented the algorithm in R, and made it able to support variable ranks and
missing data, hence any type of networks as input.

4.1.1 Synthetic Data

Convergence

We tested our EM algorithm on a simulated random network of size n = 20, K =
5, p = 4, a = 2, b = 2 and plotted the log-posterior at each single update in the matrix
(w), one epoch being one full update of the matrix. We also performed the EM
algorithm on the same network with different initial values of (w) randomly drawn
from the priors.

Figure 4.1: Performance on the first 4
epochs

Figure 4.2: Performance on 30 epochs

From these figures we can draw several remarks:

1. The algorithm converges to a local maximum of the posterior.
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2. The convergence is fast in this example: in two or three epochs we already have
a good approximation of the MAP.

3. No matter the initial value of (w), the algorithm seems to converge to the same
value of the maximum of the posterior. Hence, suggesting that the maximum
found is the global maximum (not unique, at least because of the labelling of
the communities).

Performance

Here we randomly drew graphs of size n = 20 and performed the EM algorithm as well
as the L-BFGS-B optimization algorithm [8]. In order to compare their performances
at finding the MAP, we took the same random initialization each time. We computed
the resulting posterior likelihood of the W resulting from the algorithms. And we
plotted them in the same graph.

Figure 4.3: Performance Comparison between the EM and L-BFGS-B algorithm
.

We can see no significant differences between the performance at finding the MAP
between a state-of-the art optimization algorithm and our EM algorithm. In terms
of efficiency, our EM algorithm is approximately ten times less efficient, but the
implementation is not optimized compared to an algorithm available in a library.

Community Detection

We assessed the performance of our model at performing community detection. To
do so, we applied our algorithm to random directed graphs drew from the Stochastic
Block Model (SBM) [29]. The SBM is a generative model for random graphs that is a
generalization of the Erdős-Rényi model where every edge has a constant probability
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p to be created. The SBM differs by allowing different probabilities pi,j inside and
between ”blocks” of nodes. Here is a proper formulation:

1. Let n be the number of vertices of the network.

2. Let C1, ..., Cr be a partition of the n nodes into r communities.

3. Let P be a r × r symmetric matrix of probability.

Then, a random graph is sampled from this model by sampling the edge set as follows:
For all u ∈ Ci and v ∈ Cj, u and v are connected with an edge with probability Pi,j.

Here we took two balanced blocks for n nodes, defined with the inter- and intra-
block probability cout

n
and cin

n
. We then assessed the quality of a partition by comput-

ing the ”recovery” which is the proportion of nodes rightly attributed to its true block.
We compared the results of our algorithm with a bi-partitioning spectral algorithm
based on the leading eigenvector of the Laplacian matrix of the graph [32], which is
equivalent to modularity optimization. We took graphs of size n = 100 with param-
eters p = 2, a = 2, b = 1 and averaged the results of each value of cin and cout with 35
simulations. From the literature [33], we know that when cin − cout ≤

√
2(cin + cout)

no algorithm perform better than random. In the following Figure 4.4, we took the
average degree c = 3, and computed the recovery for different values of cin and cout. In
this case, the theoretical value of cin−cout

2
from which community detection is possible

is clim =
√

3 ≈ 1.7.

1.5 2.0 2.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Community detection performance evaluation

(cin − cout)/2

R
ec

ov
er

y

Community EM
Eigenvector Algorithm

Figure 4.4: Community Detection performance comparison

From the results, Figure 4.4, we can see that our model perform similarly or
slightly better that an algorithm based on modularity optimization.
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Prediction

Here we assess the ability of our model to predict preferred individuals. We proceeded
as follows:

1. We fixed the size of the networks n = 40, the parameters for graph generation:
a = 2, b = 1, p = 6.

2. We fixed the number Kmax of individuals we will study for the assessment.

3. Then, for each K ∈ {1, ..., Kmax − 1}:

(a) We generated a network where each individual ranks their K preferred
other individuals.

(b) We inferred the parameters λinferred from this network with the EM algo-
rithm, and computed the Kmax − K preferred individuals for each node,
after having removed the one already selected in the original network.

(c) We compared this list with the real list of preferred individuals drawn from
the original λ. For the comparison of two partitions of size l, we computed
the mean rank distance of each element of the lists:
For ρ1 and ρ2 two partitions of [n]:

Err(ρ1, ρ2) =
1

n

n∑
i=1

|i− s1,2(i)| (4.1)

Where s1,2(i) is the index of ρ1(i) in ρ2.

(d) We repeated the previous three points nsimu = 30 times and averaged the
errors obtained.

We compared the errors obtained with errors we would obtain with a totally
random strategy of prediction. In particular we have after computation:

1

n
Eσn [

n∑
k=1

|σ(k)− k|] =
n2 − 1

3n
(4.2)

And:
1

T
Eσn [

T∑
k=1

|σ(k)− k|] =
3(n+ 1)(n− T − 1) + (T + 1)(2T + 1)

6n
(4.3)

which is equal to the previous formula for T = n. In particular, we plotted the
errors with the random errors, computed by the previous formula with nformula =
nnetwork −K and T = Kmax −K.
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Figure 4.5: Assessment of the power of prediction of our model against a random
permutation

We can see from the Figure 4.5, that the error from the model shrinks as K
increases, which is what we expect since we predict the Kmax − K next preferred
individuals with the information encapsulated in the K preferred individuals. Second,
we can see that our model is efficient. With K = 1 we still predict 33% better than
a random assignment for the prediction of the 9 next individuals in a network of 40
individuals. Similarly, the model performs 66% better than random for the prediction
of the 10th individual, knowing the first 9.

4.1.2 Toy Example

In this subsection, we evaluate the coherence of the results obtained by our model
and our algorithm by testing it on a toy model.

We drew a first simple example with a clear clustering into two groups of individ-
uals, showed in Figure 4.6. Running the EM algorithm is instantaneous and returns
the following matrix for W :

W =


0.1294021 1.0349799
0.1228317 0.8720837
0.1187870 0.7219490
1.0349782 0.1294015
0.8720818 0.1228311
0.7219470 0.1187863

 (4.4)

There is a clear differentiation between two groups as illustrated in Figure 4.7. Fur-
thermore, we can see that the greatest values for wi,j in the respective communities
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are assigned to the most appreciated individuals in each group (denoted by bolder
arrows), which is expected.

Figure 4.6: Initial Network with two
independent groups of individuals

Figure 4.7: Inferred communities

Then, we drew a second example to test the recovering of missing data, showed
in Figure 4.8.

12 3

4

5

6

Figure 4.8: Toy network

Figure 4.9: Posterior Inference

We obtain the vector

λ6 =


0.7126756
0.3652081
0.2488320
0.2424432
0.2458105
0.0000000

 (4.5)

The model predicts that individual 6 is likely to prefer the most influential indi-
vidual, individual 1, and then individual 2, which is expected.
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4.1.3 Sampson Data Set

Here we test our model on a real-world data set, the Sampson data set, gathered by
Samuel F. Sampson [2]. The data set summarizes relationships among 18 monks who
were about to enter a monastery when a conflict erupted. The monks are divided by
Sampson into three groups: Loyal Opposition, Turks, and Outcasts. The data set is
in the form of rank preferences for each monk.

We ran the EM algorithm on this data set with a random initialization and p = 3
communities, and the same priors as previously used. We obtained the following
result :

Loyal

Turks

Outcasts

We recover the same communities as described by Sampson in his research.
We chose p = 3 because we already know from the study of Sampson that the

data describe three factions. It can be interesting to infer the number of clusters
directly from the data, thanks to the information criteria introduced previously. Here
we computed both the AIC and the BIC of the data for different p, we computed
the maximum likelihood estimators with a BFGS optimization algorithm [8]. We
obtained plots 4.10 and 4.11:

Figure 4.10: Model Selection with the
AIC criterion

Figure 4.11: Model Selection with the
BIC criterion

We can see from the plots that the AIC would select p = 8 clusters, whereas the
BIC would select p = 3 clusters. This is expected since the BIC criterion discriminates
complex models more than the AIC criterion. Although here the BIC criterion selects
the expected model, these criteria are simple indications, model selection should be

27



the result of a mature reflexion, and can take into account other elements such as
time and memory costs.

4.2 Gibbs Sampler for Degree Correction

We implemented the Gibbs Sampler previously described in R, and made it able to
support variable ranks and missing data, and hence any type of network as input. In
the markov chain we only kept track of the wi,j and of the bi to save memory, since
the latent variables are useful for computational reasons. To perform inference, we
chose to take the maximum a posteriori as point estimates. Indeed, as we will show
in the plots of the posterior distribution, and discussed in the section Identifiability,
a posterior mean estimate is not relevant since the priors and likelihood of our model
are invariant by relabelling.

4.2.1 Synthetic Data

Auto-correlation

Here we plot the auto-correlation function for 10, 000 samples drew from the gibbs
sampler, with a random graph of size n = 30, with the following parameters : K =
5, p = 4, a = 2, b = 2. We averaged the auto-correlation over all the parameters in
order to infer global information about the chain.

Figure 4.12: Caption

As expected, the auto-correlation tends to zero as the lag increases. We obtain for
this simulation an effective sample size of nESS = 13.35×n. For lag = 10, the samples
are weakly correlated. Hence, thinning the samples with a lag of 10 can optimize the

28



use of memory, without losing too much information. A plot of the traces show that
a small burn-in is sufficient to attain a state of ”white noise” of the parameters.

4.2.2 Toy Example

Here we took the exact same example as in Figure 4.6, and ran the Gibbs sampler
with 1, 000, 000 samples with lag 10, and burn-in 20, 000. We obtain the following
results:

Posterior of b1

MAP = 19.4
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Figure 4.13: Gibbs Sampler for the Toy Example

Wmap =


0.078115599 0.0028624276
0.045019096 0.0003526772
0.069078810 0.0039184428
0.012006837 0.1371274807
0.025554788 0.1069460127
0.004471144 0.2250585478

 (4.6)

We recover the same communities as before, the plots show that we obtain the same
distribution for the bi, which makes sense in this case. Taking the posterior mean
estimates of the wi,k give the same communities, but the values obtained hardly
differentiates the clusters (the w values are very similar).

4.2.3 Sampson Data Set

We ran 1, 000, 000 iterations of the Gibbs Sampler, with α0 = 1, β0 = 1, a = 2, p = 3
on the Sampson data set, and kept only one over ten samples in the chain. Fortu-
nately, we recover exactly the same communities as before, as one can check on the
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resulting W written below, and we obtain the following point estimates for the degree
corrections, based on the MAP of the Gibbs Sampler. The results are coherent since a
high degree correction means that the community is less influent. Here the Outcasts
are the least influent, then comes the Loyals, and finally the Turks. The Tuks and
the Loyals have a similar degree of influence compared to the Outcasts.
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Figure 4.14: Gibbs Sampler for the Sampson Data Set

Wmap =



0.028342178 0.132794703 0.0028116997
0.015526648 0.144659851 0.0225950927
0.012170875 0.013111505 0.0435052950
0.077882047 0.008449029 0.00663582510
0.059784248 0.027460357 0.0158763848
0.043725084 0.002394237 0.0017029809
0.016711364 0.041887322 0.0258955378
0.049441668 0.0131104534 0.0063907626
0.084609098 0.008414093 0.0056879136
0.011126239 0.001325130 0.0005210007
0.032382804 0.014872686 0.0031258213
0.001972192 0.041519433 0.0064190197
0.007587735 0.004190892 0.0358233982
0.005740627 0.067199814 0.0021474452
0.008283047 0.034239040 0.0028699507
0.004629673 0.028643459 0.0062985036
0.003683552 0.003301192 0.0220477571
0.001072851 0.012621787 0.0178437508



(4.7)
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Again, taking the posterior mean estimates gives the same communities as the
MAP, but the magnitude of differences between the (wi,k)k∈[p] is very small, due to
the non-identifiability.

4.3 Model With Covariates

4.3.1 Toy Example

We first ran the algorithm on a toy example of size n = 10, with a clear separation
between a node very ”Popular”, that is to say a node appreciated by all the other
nodes, but liking only one individual. Here we have no covariates, only the parameters
corresponding the popularity of each node.

Figure 4.15: Graph Network Example

We obtain a popularity of β1 = 1.86 for node 1, and β3 = 0.095 for node 3 and
β∗ = −0.28 for the rest, which is consistent with what we would expect.

4.3.2 Peerinfl Data Set

The peerinfl data set was gathered by Daniel McFarland for its study on Student
Resistance at school [15]. The data set consists of individual level attributes, such as
how often does the student socialize or whether he likes the course on a scale of 0 to
5, as well as dyadic attributes, for the top 5 friends in semester one, and the whole
class in semester two. We broke ties randomly for the top-5 friends and kept the
classes that last the two semesters in order to incorporate the covariates, we obtained
25 classes on 36. Since certain students left after semester 1 and joined in semester
2, we only considered the one that stayed all along. Missing data were not frequent,
hence we replaced them with the median value of the corresponding attributes. We
deleted non-expected data, such as students belonging to their own top-5 friends. We
also scaled the attributes by class.
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Example

First we consider the class no851, and the dyadic attributes consisting of the evalua-
tion of i about j sociability, ability to work and expected grades.
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Figure 4.16: Class number 851 constituted of 24 students across two semesters.

We ran the Plackett-Luce model with covariates as well as the SRRM model with
the package ”amen” on R, [34], with n = 100, 000 states and a burn-in of 1000. We
obtained the following results :
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Figure 4.17: Estimation of the regression parameters of the SRRM model.
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With Plackett-Luce, we respectively obtain b1 = 0.925, b2 = 0.393, b3 = 0.277.
The SRRM model allows us to compute the posterior mean estimates of the row and
column effects of the model ai and bi, which are effectively correlated with the nodes
respective Sociability and Popularity as we can see in the following plots.

Figure 4.18: Correlation between bi
and the Indegree

Figure 4.19: Correlation between ai
and the Outdegree
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Prediction

Finally, we assess the prediction power of the SRRM model as follows :

1. For every class in the data set, we kept the students that stayed in both
semesters, and filled missing data in the covariates with the median value of
the attributes per class. We then built the network constituted by the maxi-
mum top-5 friends of each individuals in the class.

2. For every class network :

(a) The nodes of the network do not have the same outdegree, we computed
the maximum value of the outdegree Kmax.

(b) For i ∈ [Kmax − 1]

i. For every node k in the network, we removed the
min(i, outdegree(k)− 1) least important neighbours of k.

ii. We fitted the SRRM model with the package ”amen” from R, gen-
erating a Markov Chain of length nscan = 20, 000 with a burn-in of
1, 000.

iii. We used the Ypost which is the posterior mean of the values of the ma-
trix λ in our formulation to rank the other individuals of the network
for each node k.

iv. For every node k, we compared the predicted list with the actual best
individuals that have been removed by computing the ratio between
the ranking error of the individuals removed with the individuals pre-
dicted, and the random errors given by Eq.4.3. For every node k,
T = min(i, outdegree(k)− 1) and
nformula = nnetwork − 1−min(i, outdegree(k)− 1).

v. We averaged the error over the nodes.

(c) We stored the errors by i, the maximum number of individuals removed.

3. We averaged the errors over the classes by maximum number of individuals
removed.

We obtain the following plot:
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As we would expect, the error curve increases as we have less information to
perform inference. For 1 and 2 individuals removed from the list of preferences, we
are sure to recover the proper rankings better than randomly. For 3 and 4 individual
removed, the model is better on average, but not in certain cases.

35



36



Chapter 5

Discussion

Many avenues remain to be investigated. First, the main drawback of the Plackett-
Luce model as presented is the fact that the number of best friends chosen by an
individual Ki is fixed in advance. Hence, the model cannot infer any information on
the structure of the matrix λ given Ki. In particular, the ”Sociability” or ”Popularity”
of an individual cannot be captured. This can be fixed by treating eachKi as a random
variable depending on the λ, the scheme of variables can be interpreted in Figure
5.1. The distribution P (K|λ) has to be designed to be analytically convenient and
to represent some beliefs. Second, the Gibbs Sampler designed in Section ”Degree-
Correction” is correct but suffers the limitation that the posterior distribution of the
parameters is invariant by relabelling, we have taken a MAP estimate to bypass this
issue, but the downside of this estimate is that we cannot built confidence intervals
contrary to the posterior mean estimate. Introducing artificial constraints on the
prior could be advantageous as discussed in [14]. Third, a very interesting avenue of
investigation would be to refine our models with covariates to perform community
detection. This could be done by introducing a mixture of Plackett-Luce models as
in [26]. One could explore its adaption to the SRRM model. Fourth, many realistic
data have ties in their rank nominations, in the case pairwise comparison, some model

ρ

Z YK

λ

b

Figure 5.1: Adaptation of the Plackett-Luce model for partial rankings
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treating ties in the rankings have been developed [3], [27], one could investigate their
adaptation in the case of the listwise approach. Finally, deep learning approaches
have been developed to model λ as a function of covariates with a neural net [20],
the parameters being trained with a loss function and an optimization algorithm
(typically by gradient descent), one could investigate the virtues of these approaches
with respect to the methods developed in this project.
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Appendix A

Preliminaries

A.1 MM algorithm

The MM algorithm (Majorize-Minimization or Minorize-Maximization) is a proce-
dure for building an iterative optimization algorithm [18]. The MM algorithm works
by finding a surrogate function that minorizes or majorizes the objective function.
Optimizing the surrogate function will drive the objective function upward or down-
ward until a local optimum is reached. In the case of a concave f(θ) function to be
maximized the algorithm works as follow, at step m (Minorize-Maximization):

1. Build a surrogate function g(θ|θm) such that:

(a) g(θ|θm) ≥ f(θ) ∀θ
(b) g(θm|θm) = f(θm)

2. Maximize g(θ|θm) instead of f(θ) and let

θm+1 = argmax
θ

g(θ|θm)

3. Iterate until converge.

The Maximization-Minorize is similar for a convex objective function.

A.2 EM algorithm

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent variables
[5], [13] and can be treated as a special case of the MM algorithm.
If we consider a model with X the observed variables and Z the latent variables, and
θ the set of parameters that govern the likelihood of the model, we want to maximize
the quantity:

p(X|θ) =

∫
Z

p(X,Z|θ)dZ (A.1)
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In the case where this integral is intractable, the EM algorithm is an applicable
alternative that finds the MLE by iterative updates. It proceeds in two steps:

E-step(Expectation Step): Define Q(θ|θ(t)) as the expected value of the log likeli-
hood function of θ, with respect to the current conditional distribution of Z given X
and the current estimates of the parameters θ(t)

Q(θ|θ(t)) = EZ|X,θ(t) [log(p(X,Z|θ))] (A.2)

M-step(Maximization Step): Find the parameters that maximize this quantity:

θ(t+1) = argmax
θ

Q(θ|θ(t)) (A.3)

The algorithm then iterates these two steps until convergence. This algorithm mono-
tonically approaches a local minimum of the cost function.

A.3 Gibbs Sampler

The Gibbs Sampler is a particular case of a Markov Chain Monte Carlo algorithm.
The goal is to sample from a target distribution with multiple variables π(x1, ..., xn).
In the configuration of the Gibbs sampler, we can sample from the conditional distri-
bution π(xi|(xj)j 6=i), we then have the following steps [10]:

1. We begin with initial values X(t) = (x
(t)
1 , ..., x

(t)
n ).

2. Then, to build the full vector X(t+1), we sample coordinate-wise according to
the conditional distributions:

x
(t+1)
i ∼ π(xi|x(t+1)

1 , ..., x
(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n ) (A.4)

3. We repeat the previous step k times, for a chain of length k + 1.

The samples generated by this process approximate the joint distribution π(x1, ..., xn).
From the samples we can approximate the marginal distribution over a subset of the
variables by just observing this subset and ignoring the rest. The average of a certain
variable over the samples is also an approximation of the mean of the variable. A
burn-in step in which a predetermined number of first samples are removed from the
chain.

A.4 Metropolis-Hasting Algorithm

The Metropolis-Hasting Algorithm is a particular case of a Markov Chain Monte Carlo
algorithm. The goal is to sample from a target distribution π(x). In the configuration
of the Metropolis-Hasting Algorithm, we can evaluate a function f(x) proportional
to the target distribution π(x), we, then, have the following steps [19]:
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1. Initialization: We choose a initial sample x0 and a proposal distribution Q(x|y)
that proposes the next candidate for the Markov Chain, given a previous state.

2. For each iteration t:

(a) Generate : Generate a candidate x′ for the next sample by picking from
the distribution Q(x′|x(t))

(b) Calculate : Calculate the acceptance ratio α = min(1, f(x′)Q(x(t)|x′)
f(x(t))Q(x′|x(t))) ,

which will be used to decide whether to accept or reject the candidate.

(c) Accept or Reject : Sample u ∼ U(0, 1). If u < α accept the proposition
and assign x(t+1) = x′, else reject and assign x(t+1) = x(t).

In this algorithm, a burn-in step in which a predetermined number of first samples
are retrieved from the chain can be applied in order to reduce the effect of the first
samples that can follow a completely different distribution. Furthermore, the samples
generated by this algorithm are typically auto-correlated. Thus, we should throw away
the majority of the samples and only take every nth sample, for some value of n.

A.5 Reversible Jump MCMC

The Reversible Jump MCMC (RJMCMC) is a Markov Chain Monte Carlo method
that supports jump across dimensions, for the purpose of model selection when the
number of parameters is not the same in the models. The chain targets the posterior
density p(θ,m|D). Let (m(t), θ

(t)

m(t)) be the current state of the Markov Chain, the
next iteration is constructed as follows (see [30]):

1. Sample a candidate model M∗|m(t) from a proposal density with conditional
density g(|m(t)).

2. Given M∗ = m∗ generate an augmenting variable U |(m(t), θ
(t)

m(t) ,m
∗) from a

proposal distribution with density h(.|m(t), θ
(t)

m(t) ,m
∗). Let

(θ
(t)

m(t) , U
∗) = qt,∗(θ

(t)

m(t) , U) (A.5)

Where qt,∗ is an invertible mapping from (θ
(t)

m(t) , U) to θ∗m∗ , U
∗ and the auxiliary

variables have dimensions satisfying dim(θ
(t)

m(t))+dim(U) = dim(θ∗m∗)+dim(U∗).

3. For a proposed model, M∗ = m∗, and the corresponding proposed parameter
values θ∗m∗ , compute the Metropolis - Hastings acceptance probability given by:

α(xt, x∗) = min(1,
p(m∗, θ∗m∗ , U

∗|y)g(m(t)|m∗)h(u∗|m∗, θ∗m∗ ,m(t))

p(m(t), θ
(t)

m(t) , U (t)|y)g(m∗|m(t))h(u|m(t), θ
(t)

m(t) ,m∗)
|J(t)|)

(A.6)
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Where where J(t) is the Jacobian matrix:

J(t) =
dqt,∗f(θ, u)

d(θ, u)

∣∣∣
(θ,u)=(θ

(t)

m(t)
,U)

(A.7)

If the proposal is accepted, set x(t+1) = (m∗, θ∗m∗), otherwise set x(t+1) = x(t).

4. Discard U and U∗ and return to step 1.

A.6 MCMC Convergence Diagnostic

When inferring parameters using MCMC methods, the question of convergence and
accuracy is crucial, since we study a probability distribution with finite Markov Chains
that are supposed to converge asymptotically. Convergence diagnostics is a complex
subject and well studied by the literature [21]. We will only describe some tools.

1. When studying a Markov Chain, the first tool we can use is the trace plot,
which is simply the plot of the parameters of the markov chain. Generally
speaking, the trace plot consists of a ”transitional regime” converging toward a
”permanent regime” where the parameters behave like random noise around a
mean value. In this case, the transitional regime can be considered as irrelevant,
and be dropped in the Markov Chain in order to increase the accuracy of some
estimators. The number of initial states that we may drop is called the Burn
in.

2. The main objective of a Markov Chain in a Bayesian configuration is to sample
from the posterior distribution of the parameters. Since every new state of a
Markov Chain is constructed with the previous one, the samples are typically
correlated. This correlation depends on the way the Markov Chain is designed.
For instance, in a M-H algorithm, a Markov Chain with a very low acceptance
ratio results in many constant states, hence many fully correlated states. On
the contrary, when the acceptance ratio is too high, the proposal may be too
concentrated on the previous state in the space of parameters, which also mean
that the states are correlated. This correlation results in a loss of information
compared to totally independent states, and thus a waste of memory. To assess
the correlation between states, the Autocorrelation function can be used and is
defined, for lag s, and parameter random variable Xi from the ith state of the
chain by:

ρs =
Cov(Xi, Xi+s)

V ar(Xi)
(A.8)

This quantity can be estimated on the whole chain. When one plot the auto-
correlation as a function of the lag s, a fast rate of decay of the curve obtained
indicates that the chain is weakly correlated, which is desirable. To optimize
the memory cost, one can design a lag parameter for the markov chain, which
consists in preserving the states of the chain only every sth moves. The states
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dropped are informative, but their removal optimizes memory cost. To assess
the impact of state correlation on the efficiency of the Markov Chain, one can
compute the effective sample size ness which is the equivalent length of a chain
of independant states:

ness =
n

τ
(A.9)

τ = 1 + 2
n−1∑
s=1

ρs (A.10)

Often, τ is estimated up to t < n− 1 since lim
s→+∞

ρs = 0.
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